

The Health Benefits of Vitamin E & Why Do People Take Vitamin E
Vitamin E is a fat-soluble vitamin with several forms, but alpha-tocopherol is the only one used by the human body. Its main role is to act as an antioxidant, scavenging loose electrons—so-called “free radicals”—that can damage cells. [1] It also enhances immune function and prevents clots from forming in heart arteries. Antioxidant vitamins, including vitamin E, came to public attention in the 1980s when scientists began to understand that free radical damage was involved in the early stages of artery-clogging atherosclerosis, and might also contribute to cancer, vision loss, and a host of other chronic conditions. Vitamin E can protect cells from free radical damage as well as reduce the production of free radicals in certain situations. However, conflicting study results have dimmed some of the promises of using high-dose vitamin E to prevent chronic diseases. Vitamin E exists naturally in certain foods, including seeds, nuts, some vegetables, and some fortified products. You can also take it as a dietary supplement.
It plays many roles in your body. It’s perhaps best known for its antioxidant effects, protecting your cells from oxidative damage by neutralizing harmful molecules called free radicals. In addition, it’s needed for proper immune function and cellular signaling.
That’s why it’s not surprising that research suggests taking vitamin E supplements may benefit your health in several ways.
Overdosing on food-based vitamin E is unlikely. However, it is possible to consume too much vitamin E through supplements, and this can lead to negative side effects and harm your health.
For example, studies have found that vitamin E supplements may increase the risk of prostate cancer in healthy men.
High dose vitamin E supplements may also increase the risk of bleeding.
According to the NIH, the Tolerable Upper Intake Level (UL) for supplemental vitamin E is currently set at 1,000 mg per day.
However, health concerns — including a possible risk of increased mortality — are associated with doses much lower than the UL. Therefore, you should generally not supplement with vitamin E unless a qualified healthcare professional recommends it and monitors your intake.
Keep in mind that doses found in vitamin E supplements vary significantly, with some providing much more than a healthy person needs each day. Therefore, make sure to check the labels of vitamin supplements carefully.
Recommended Amounts
The Recommended Dietary Allowance (RDA) for vitamin E for males and females ages 14 years and older is 15 mg daily (or 22 international units, IU), including women who are pregnant. Lactating women need slightly more at 19 mg (28 IU) daily.
Why do people take vitamin E?
Many people use vitamin E supplements in the hopes that the vitamin’s antioxidant properties will prevent or treat disease. But studies of vitamin E for preventing cancer, heart disease, diabetes, cataracts, and many other conditions have been disappointing.
So far, the only established benefits of vitamin E supplements are in people who have an actual deficiency. Vitamin E deficiencies are rare. They’re more likely in people who have diseases, such as digestive problems and cystic fibrosis. People on very low-fat diets may also have low levels of vitamin E.
What are the risks of taking vitamin E?
The risks and benefits of taking vitamin E are still unclear. Research has linked the use of vitamin E to an increase in hemorrhagic stroke.
In addition, an analysis of clinical trials found patients who took either synthetic vitamin E or natural vitamin E in doses of 400 IU per day — or higher — had an increased risk of dying from all causes, which seems to increase even more at higher doses. Cardiovascular studies also suggest that patients with diabetes or cardiovascular disease who take natural vitamin E at 400 IU per day have an increased risk of heart failure and heart failure-related hospitalization.
Vitamin E supplements might be harmful when taken in early pregnancy. One study found that women who took vitamin E supplementation during the first 8 weeks of pregnancy had a 1.7 to nine-fold increase in congenital heart defects. The exact amount of vitamin E supplements used by pregnant women in this study is unknown.
A large population study showed that men using a multivitamin more than seven times per week in conjunction with a separate vitamin E supplement actually had a significantly increased risk of developing prostate cancer.
The American Heart Association recommends obtaining antioxidants, including vitamin E, by eating a well-balanced diet high in fruits, vegetables, and whole grains rather than from supplements. If you are considering taking a vitamin E supplement, talk to your health care provider first to see if it is right for you.
Food Sources Of Vitamin E
Vitamin E is found in plant-based oils, nuts, seeds, fruits, and vegetables.
- Wheat germ oil
- Sunflower, safflower, and soybean oil
- Sunflower seeds
- Almonds
- Peanuts, peanut butter
- Beet greens, collard greens, spinach
- Pumpkin
- Red bell pepper
- Asparagus
- Mango
- Avocado
Signs of Deficiency
Because vitamin E is found in a variety of foods and supplements, a deficiency in the U.S. is rare. People who have digestive disorders or do not absorb fat properly (e.g., pancreatitis, cystic fibrosis, celiac disease) can develop a vitamin E deficiency. The following are common signs of a deficiency:
- Retinopathy (damage to the retina of the eyes that can impair vision)
- Peripheral neuropathy (damage to the peripheral nerves, usually in the hands or feet, causing weakness or pain)
- Ataxia (loss of control of body movements)
- Decreased immune function
Toxicity
There is no evidence of toxic effects from vitamin E found naturally in foods. Most adults who obtain more than the RDA of 22 IU daily are using multivitamins or separate vitamin E supplements that contain anywhere from 400-1000 IU daily. There have not been reports of harmful side effects of supplement use in healthy people. However, there is a risk of excess bleeding, particularly with doses greater than 1000 mg daily or if an individual is also using a blood thinning medication such as warfarin. For this reason, an upper limit for vitamin E has been set for adults 19 years and older of 1000 mg daily (1465 IU) of any form of tocopherol supplement. [1]
Vitamins are organic substances that are generally classified as either fat soluble or water soluble. Fat-soluble vitamins (vitamin A, vitamin D, vitamin E, and vitamin K) dissolve in fat and tend to accumulate in the body. Water-soluble vitamins (vitamin C and the B-complex vitamins, such as vitamin B6, vitamin B12, and folate) must dissolve in water before they can be absorbed by the body, and therefore cannot be stored. Any water-soluble vitamins unused by the body is primarily lost through urine.
Minerals are inorganic elements present in soil and water, which are absorbed by plants or consumed by animals. While you’re likely familiar with calcium, sodium, and potassium, there is a range of other minerals, including trace minerals (e.g. copper, iodine, and zinc) needed in very small amounts.
In the U.S., the National Academy of Medicine (formerly the Institute of Medicine) develops nutrient reference values called the Dietary Reference Intakes (DRIs) for vitamins and minerals. [1] These are intended as a guide for good nutrition and as a scientific basis for the development of food guidelines in both the U.S. and Canada. The DRIs are specific to age, gender, and life stages, and cover more than 40 nutrient substances. The guidelines are based on available reports of deficiency and toxicity of each nutrient. Learn more about vitamins and minerals and their recommended intakes in the table below.
A diet that includes plenty of fruits, vegetables, whole grains, good protein packages, and healthful fats should provide most of the nutrients needed for good health. But not everyone manages to eat a healthful diet. Multivitamins can play an important role when nutritional requirements are not met through diet alone. Learn more about vitamin supplementation.
Vitamins and their precise requirements have been controversial since their discovery in the late 1800s and early 1900s. It was the combined efforts of epidemiologists, physicians, chemists, and physiologists that led to our modern day understanding of vitamins and minerals. After years of observation, experiments, and trial and error, they were able to distinguish that some diseases were not caused by infections or toxins—a common belief at the time—but by vitamin deficiencies. [2] Chemists worked to identify a vitamin’s chemical structure so it could be replicated. Soon after, researchers determined specific amounts of vitamins needed to avoid diseases of deficiency.
In 1912, biochemist Casimir Funk was the first to coin the term “vitamin” in a research publication that was accepted by the medical community, derived from “vita” meaning life, and “amine” referring to a nitrogenous substance essential for life. [3] Funk is considered the father of vitamin therapy, as he identified nutritional components that were missing in diseases of deficiency like scurvy (too little vitamin C), beri-beri (too little vitamin B1), pellagra (too little vitamin B3), and rickets (too little vitamin D). The discovery of all vitamins occurred by 1948.
Vitamins were obtained only from food until the 1930s when commercially made supplements of certain vitamins became available. The U.S government also began fortifying foods with specific nutrients to prevent deficiencies common at the time, such as adding iodine to salt to prevent goiter, and adding folic acid to grain products to reduce birth defects during pregnancy. In the 1950s, most vitamins and multivitamins were available for sale to the general public to prevent deficiencies, some receiving a good amount of marketing in popular magazines such as promoting cod liver oil containing vitamin D as bottled sunshine.
Due to occasional reports of negative health effects of vitamin E supplements, scientists have debated whether these supplements could be harmful and even increase the risk of death.
Researchers have tried to answer this question by combining the results of multiple studies. In one such analysis, the authors gathered and re-analyzed data from 19 clinical trials of vitamin E, including the GISSI and HOPE studies [49]; they found a higher rate of death in trials where patients took more than 400 IU of supplements a day. While this meta-analysis drew headlines when it was released, there are limitations to the conclusions that can be drawn from it. Some of the findings were based on very small studies. In some of these trials, vitamin E was combined with high doses of beta-carotene, which itself has been related to excess mortality. Furthermore, many of the high-dose vitamin E trials included in the analysis included people who had advanced heart disease or Alzheimer’s disease. Other meta-analyses have come to different conclusions. So it is not clear that these findings would apply to healthy people. The Physicians’ Health Study II, for example, did not find any difference in death rates between the study participants who took vitamin E and those who took a placebo. [13]
References
- Institute of Medicine. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, D.C.: National Academies Press; 2000.
- U.S Preventive Services Task Force, Mangione CM, Barry MJ, Nicholson WK, Cabana M, Chelmow D, Coker TR, Davis EM, Donahue KE, Doubeni CA, Jaén CR, Kubik M, Li L, Ogedegbe G, Pbert L, Ruiz JM, Stevermer J, Wong JB. Vitamin, Mineral, and Multivitamin Supplementation to Prevent Cardiovascular Disease and Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2022 Jun 21;327(23):2326-2333.
- Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med. 1993;328:1444-9.
- Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med. 1993;328:1450-6.
- Rimm EB, Stampfer MJ. Antioxidants for vascular disease. Med Clin North Am. 2000;84:239-49.
- Lee IM, Cook NR, Gaziano JM, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA. 2005;294:56-65.
- Glynn RJ, Ridker PM, Goldhaber SZ, Zee RY, Buring JE. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism: report from the Women’s Health Study. Circulation. 2007;116:1497-503.
- Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet. 1999;354:447-55.
- Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:154-60.
- Lonn E, Bosch J, Yusuf S, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338-47.
- Kris-Etherton PM, Lichtenstein AH, Howard BV, Steinberg D, Witztum JL. Antioxidant vitamin supplements and cardiovascular disease. Circulation. 2004;110:637-41.
- Hercberg S, Galan P, Preziosi P, et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med. 2004;164:2335-42.
- Sesso HD, Buring JE, Christen WG, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123-33.
- Milman U, Blum S, Shapira C, et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol. 2008;28:341-7.
- Hunter DJ, Manson JE, Colditz GA, et al. A prospective study of the intake of vitamins C, E, and A and the risk of breast cancer. N Engl J Med. 1993;329:234-40.
- Willett WC, Polk BF, Underwood BA, et al. Relation of serum vitamins A and E and carotenoids to the risk of cancer. N Engl J Med. 1984;310:430-4.
- Chan JM, Stampfer MJ, Ma J, Rimm EB, Willett WC, Giovannucci EL. Supplemental vitamin E intake and prostate cancer risk in a large cohort of men in the United States. Cancer Epidemiol Biomarkers Prev. 1999;8:893-9.
- van Dam RM, Huang Z, Giovannucci E, et al. Diet and basal cell carcinoma of the skin in a prospective cohort of men. Am J Clin Nutr. 2000;71:135-41.
- Wu K, Willett WC, Chan JM, et al. A prospective study on supplemental vitamin e intake and risk of colon cancer in women and men. Cancer Epidemiol Biomarkers Prev. 2002;11:1298-304.
- Fung TT, Spiegelman D, Egan KM, Giovannucci E, Hunter DJ, Willett WC. Vitamin and carotenoid intake and risk of squamous cell carcinoma of the skin. Int J Cancer. 2003;103:110-5.
- Feskanich D, Willett WC, Hunter DJ, Colditz GA. Dietary intakes of vitamins A, C, and E and risk of melanoma in two cohorts of women. Br J Cancer. 2003;88:1381-7.
- Cho E, Spiegelman D, Hunter DJ, et al. Premenopausal intakes of vitamins A, C, and E, folate, and carotenoids, and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2003;12:713-20.
- Cho E, Hunter DJ, Spiegelman D, et al. Intakes of vitamins A, C and E and folate and multivitamins and lung cancer: a pooled analysis of 8 prospective studies. Int J Cancer. 2006;118:970-8.
- Lee JE, Giovannucci E, Smith-Warner SA, Spiegelman D, Willett WC, Curhan GC. Intakes of fruits, vegetables, vitamins A, C, and E, and carotenoids and risk of renal cell cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:2445-52.
- Heinonen OP, Albanes D, Virtamo J, et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst. 1998;90:440-6.
- Kirsh VA, Hayes RB, Mayne ST, et al. Supplemental and dietary vitamin E, beta-carotene, and vitamin C intakes and prostate cancer risk. J Natl Cancer Inst. 2006;98:245-54.
- Peters U, Littman AJ, Kristal AR, Patterson RE, Potter JD, White E. Vitamin E and selenium supplementation and risk of prostate cancer in the Vitamins and Lifestyle (VITAL) study cohort. Cancer Causes Control. 2008;19:75-87.
- Lippman SM, Klein EA, Goodman PJ, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301:39-51.
- Klein EA, Thompson IM, Jr., Tangen CM, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306:1549-56.
- Gaziano JM, Glynn RJ, Christen WG, et al. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2009;301:52-62.
- Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349:215-24.
- A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119:1417-36.
- Age Related Eye Disease Study 2 (AREDS2). National Eye Institute, 2007. Accessed 8 November 2007,
- Chong EW, Wong TY, Kreis AJ, Simpson JA, Guymer RH. Dietary antioxidants and primary prevention of age related macular degeneration: systematic review and meta-analysis. BMJ. 2007;335:755.
- Christen WG, Glynn RJ, Chew EY, Buring JE. Vitamin E and age-related macular degeneration in a randomized trial of women. Ophthalmology. 2010;117:1163-8.
- Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis. 2008;15:473-93.
- Grodstein F, Chen J, Willett WC. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am J Clin Nutr. 2003;77:975-84.
- Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol. 2004;61:82-8.
- Laurin D, Masaki KH, Foley DJ, White LR, Launer LJ. Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu-Asia Aging Study. Am J Epidemiol. 2004;159:959-67.
- Gray SL, Anderson ML, Crane PK, et al. Antioxidant vitamin supplement use and risk of dementia or Alzheimer’s disease in older adults. J Am Geriatr Soc. 2008;56:291-5.
- Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352:2379-88.
- Zhang SM, Hernan MA, Chen H, Spiegelman D, Willett WC, Ascherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology. 2002;59:1161-9.
- Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol. 2005;4:362-5.
- Morens DM, Grandinetti A, Waslien CI, Park CB, Ross GW, White LR. Case-control study of idiopathic Parkinson’s disease and dietary vitamin E intake. Neurology. 1996;46:1270-4.
- Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med. 1993;328:176-83.
- Ascherio A, Weisskopf MG, O’Reilly E J, et al. Vitamin E intake and risk of amyotrophic lateral sclerosis. Ann Neurol. 2005;57:104-10.
- Wang H, O’Reilly EJ, Weisskopf MG, et al. Vitamin E intake and risk of amyotrophic lateral sclerosis: a pooled analysis of data from 5 prospective cohort studies. Am J Epidemiol. 2011;173:595-602.
- Orrell RW, Lane RJ, Ross M. Antioxidant treatment for amyotrophic lateral sclerosis / motor neuron disease. Cochrane Database Syst Rev. 2007:CD002829.
- Miller ER, 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37-46.
Terms of Use
The contents of this website are for educational purposes and are not intended to offer personal medical advice. You should seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website.